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A numerical study of the onset of thermal convection in a rotating circular cylinder
of radius-to-depth ratio equal to four is considered in a regime dominated by the
Coriolis force where the onset is to so-called wall modes. The wall modes consist
of hot and cold pairs of thermal plumes rising and descending in the cylinder wall
boundary layer, forming an essentially one-dimensional pattern characterized by the
number of hot/cold plume pairs, m. In the limit of zero centrifugal force, this onset
of convection at a critical temperature difference across the depth of the cylinder
is via a symmetry-breaking supercritical Hopf bifurcation which leads to retrograde
precession of the pattern with respect to the rotation of the cylinder. For temperature
differences greater than critical, a number of distinct wall modes, distinguished by
m, coexist and are stable. Their dynamics are controlled by an Eckhaus–Benjamin–
Feir instability, the most basic features of which had been captured by a complex
Ginzburg–Landau equation model. Here, we analyse this instability in rotating
convection using direct numerical simulations of the Navier–Stokes equations in
the Boussinesq approximation. Several properties of the wall modes are computed,
extending the results to far beyond the onset of convection. Extensive favourable
comparisons between our numerical results and previous experimental observations
and complex Ginzburg–Landau model results are made.

1. Introduction
Rotating Rayleigh–Bénard convection (RRBC) encompasses the competition

between rotation and thermal buoyancy which is central to a range of hydrodynamic
situations including astrophysical and geophysical flows, as well as being readily
accessible at laboratory scales for detailed experimental investigations. The develop-
ment of the current understanding of RRBC has taken a peculiar path, in part due
to the large variety of possible nonlinear behaviour near the onset of convection,
and also due to the theoretical and numerical tools available at the time, making
idealizations in the modelling of the flow necessary and consequently influencing the
design of experiments (Hu, Ecke & Ahlers 1997).

The main idealization in convection problems is the Boussinesq approximation
which only accounts for density variations in the buoyancy terms of the governing
equations. This allows for the use of analytic and numerical techniques for
incompressible hydrodynamics. Its appropriateness has been extensively tested and
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verified, particularly when the temperature difference across the layer is small (e.g. see
the review by Bodenschatz, Pesch & Ahlers 2000, and references therein). Another
main idealization used in the early studies was to consider the convection of fluid
in a laterally unbounded but periodic layer. While this makes the linear stability
analysis of the conduction state straightforward (see Chandrasekhar 1961, for an
extensive summary of these studies), it introduces shortcomings, particularly for
the rotating convection problem. The idealized horizontal periodicity precludes the
consideration of the effects of the centrifugal force, whose strength varies with the
radial distance from the axis of rotation, and so only the effects of the Coriolis
force can be studied. Furthermore, the effects of lateral confinement are also not
accounted for. The experiments of Rossby (1967) found significant discrepancies
with the unbounded theory for the onset of convection, measuring convective heat
transfer at Rayleigh numbers much lower than predicted. Buell & Catton (1983)
and Pfotenhauer, Niemela & Donnelly (1987), based on linear stability analysis and
experiments, proposed that the cause of the discrepancy was due to the presence of
lateral confinement. Subsequent experiments, designed to allow for flow visualization
(Zhong, Ecke & Steinberg 1991, 1993; Ning & Ecke 1993), showed that the convective
heat transport recorded at Rayleigh numbers below the predicted critical value was
due to a so-called convective wall mode, consisting of alternating hot and cold thermal
plumes rising and descending in the cylinder sidewall boundary layer, and precessing
retrograde with respect to the rotation of the cylinder. The linear stability analysis of
Goldstein et al. (1993, 1994) confirmed this picture of the onset of RRBC due to the
combined effects of Coriolis force and lateral confinement in a finite cylinder. The
nonlinear behaviour of RRBC just beyond onset, however, presents a challenging
problem owing to the co-existence of multiple stable nonlinear states.

Herrmann & Busse (1993) and Kuo & Cross (1993) considered a model problem
which analysed the flow local to a lateral wall neglecting curvature, which amounted
to having the axis of rotation infinitely far away from the wall. They were able to
show that the observed onset of RRBC below the predicted critical Rayleigh number
could be accounted for by the Coriolis force and the presence of a lateral wall, even
if the wall was far from the rotation axis.

The nonlinear dynamics of the wall modes are significantly influenced by the
symmetry of the problem, e.g. their onset breaks the invariance under rotations about
the rotation axis and this symmetry breaking is the root cause of the observed
precession of the flow pattern (Ecke, Zhong & Knobloch 1992). It was recognized
early on that the weakly nonlinear behaviour of the wall modes fit the framework
of the Eckhaus instability (Eckhaus 1965), and that due to the precession of the
pattern at onset, had analogies with the Benjamin–Feir instability (Benjamin & Feir
1967) and could be modelled via the complex Ginzburg–Landau equation (Ning &
Ecke 1993; Liu & Ecke 1997, 1999). The discreteness of the wavenumber due to the
periodicity of the azimuthal direction suggests that analogous effects due to discrete
spectra in the real Ginzburg–Landau equation described in Ahlers et al. (1986) and
Tuckerman & Barkley (1990) can be expected to play a role in RRBC.

Janiaud et al. (1992) also investigated the Eckhaus–Benjamin–Feir (EBF) instability
of travelling waves. The basic state in their system consisted of concentric convection
rolls in an annulus which were forced to be axisymmetric under some conditions by
a thin resistive wire placed on the outer cylinder wall which provided a controlled
radial temperature gradient when a voltage was applied. This basic state has O(2)
symmetry in azimuth, i.e. it is invariant to arbitrary rotations about the axis and to
reflections in a meridional plane. When the system bifurcates to three-dimensional,
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waves appear on the rolls with a discrete azimuthal wavenumber. Above criticality,
there are a number of three-dimensional states with a band of wavenumbers that are
stable. These waves may rotate in either the clockwise or counterclockwise direction
since it is the O(2) symmetry that is being broken (Knobloch 1994), and standing
waves are also possible but apparently not observed in these experiments. At about
the same time, the wall modes in RRBC were identified, and this problem only has
SO(2) symmetry in azimuth, owing to the bias provided by the rotation, and hence
the wall modes rotate in one direction only. Hence, the study of the EBF instability
of the wall modes is somewhat more straightforward than in the problem studied by
Janiaud et al. (1992).

Flow visualization is difficult to achieve in RRBC experiments very near onset.
Furthermore, since the wall modes are due to the Coriolis force in the presence of a
lateral boundary and the centrifugal force tends to quench the wall mode (we have
preliminary numerical results showing this quenching, which we shall report in detail
elsewhere), experiments have been restricted to quite small Coriolis force and/or small
aspect ratio cylinders in order to keep the centrifugal force negligible. A consequence
of the restriction to small Coriolis force is that the range of temperature differences
across the layer over which wall modes are present without any convective motion in
the bulk diminishes with decreasing Coriolis force; see figure 2 of Liu & Ecke (1999).
In order to explore the EBF instability over a large range of azimuthal wavenumbers
it is then desirable to have a large Coriolis force or a cylinder of large radius-to-
depth aspect ratio, but both of these lead to large centrifugal effects. Numerically,
there is no problem in setting the centrifugal force to zero while incorporating a
sizeable Coriolis force. In fact, the vast majority of numerical studies of RRBC do
this.

It is only relatively recently that theoretical and numerical studies of the wall
mode have been conducted implementing realistic no-slip boundary conditions. These
studies include Plaut (2003), whose theoretical model neglected curvature effects,
and Choi et al. (2004) whose numerical model also neglected curvature effects. Both
studies focused on determining the marginal stability curve for the onset of wall
modes together with some weakly nonlinear analysis with the aim of estimating
the coefficients in a complex Ginzburg–Landau equation model of the problem.
The resulting envelope equation models were successful in reproducing some aspects
very near onset, but a number of discrepancies with experimental observations were
partially attributed to the neglect of curvature effects. Neither study investigated the
EBF instability. At about the same time, Scheel et al. (2003) conducted a numerical
investigation using realistic no-slip boundary conditions in an annular geometry, also
with the aim of estimating the coefficients in a complex Ginzburg–Landau model of
the problem. Sánchez-Álvarez et al. (2005) computed RRBC in a cylindrical geometry
using realistic boundary conditions, and have reported some examples of wall modes,
as well as bulk modes displaying Kuppers–Lörtz type domain chaos and other more
regular bulk patterns, in good agreement with the experimental observations reported
in Bajaj et al. (1998). However, neither of the numerical studies which included
curvature effects addressed the EBF instability of the wall modes.

In this paper, we present a nonlinear numerical study, using the Navier–Stokes–
Boussinesq equations with realistic no-slip boundary conditions in a cylindrical
geometry, of the effects of large Coriolis force on the onset of RRBC via wall
modes, and their EBF instability. The results are in very good agreement with the
comprehensive experimental observations reported in Liu & Ecke (1997, 1999), for
similar but slightly larger values of the aspect ratio and smaller rotation rates. Our
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results with stronger Coriolis force lend further support to their description of the
nonlinear dynamics associated with the Coriolis force near the onset of RRBC.

2. Governing equations and numerical scheme
We consider the flow in a circular cylinder of radius r0 and depth d , rotating at

a constant rate ω rad s−1. The top endwall is maintained at a constant temperature
T ∗ = T0 − 0.5�T and the bottom endwall at a constant temperature T ∗ = T0 + 0.5�T .
The Boussinesq approximation is implemented, which treats all fluid properties as
constant, except for the density in the buoyancy terms which are comprised of the
gravitational and the centrifugal buoyancies. To lowest order, the density varies
linearly with temperature, i.e.

ρ = ρ0(1 − α(T ∗ − T0)), (2.1)

where T0 is the mean temperature and ρ0 is the density at that temperature. In the
rotating frame of reference, the governing equations are

(∂t + u · ∇)u = −∇P/ρ0 + ν∇2u + gαT ẑ + 2ωu × ẑ − ω2αT r, (2.2)

(∂t + u · ∇)T = κ∇2T , (2.3)

∇ · u = 0, (2.4)

where u is the velocity field, T = T ∗ − T0 is the temperature deviation with respect to
the mean temperature, P is the dynamic pressure which incorporates the hydrostatic
pressure due to the gravitational and centrifugal forces, g is the acceleration due
to gravity, α is the coefficient of volume expansion, ν is the kinematic viscosity, r
is the radial vector in cylindrical coordinates, and ẑ the unit vector in the vertical
direction z.

The system is non-dimensionalized using d as the length scale, d2/κ as the time
scale, where κ is the thermal diffusivity, and �T as the temperature scale. There are
five non-dimensional parameters:

Rayleigh number: Ra = αgd3�T /κν,

Coriolis number: Ω = ωd2/ν,

Froude number: Fr = ω2r0/g,

Prandtl number: σ = ν/κ,

aspect ratio: γ = r0/d.

The non-dimensional cylindrical domain is (r, θ, z) ∈ [0, γ ] × [0, 2π) × [−1/2, 1/2].
The resulting non-dimensional equations (from now on, u and T are dimensionless
quantities) are

(∂t + u · ∇)u = −∇p + σ∇2u + σRaT ẑ + 2σΩu × ẑ − σFrRa

γ
T r, (2.5)

(∂t + u · ∇)T = ∇2T , (2.6)

∇ · u = 0. (2.7)

The boundary conditions for u and T are:

r = γ : Tr = u = v = w = 0, (2.8)

z = ± 1
2
: T = ∓0.5, u = v = w = 0, (2.9)
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where (u, v, w) are the components of u in cylindrical coordinates. Regularity
conditions (i.e. that the velocity and temperature be analytic) on the axis (r = 0)
are enforced using appropriate spectral expansions for u and T .

In this study, we are interested in the EBF instability of the wall modes near onset
of convection, and all the experiments on this topic have been conducted in the small
centrifugal force limit. Hence, we take Fr =0 here and shall present the effects of
Fr �= 0 elsewhere. Experiments on the onset of RRBC have typically been restricted
to quite weak Coriolis force, as measured by Ω . This restriction is due to the desire
to keep the centrifugal force small (i.e. restricting the Froude number Fr < 0.01), and
so experiments have typically only explored the effects of a very limited amount
of rotation. Here, we take Fr =0 but use a large Ω =625 so that the wall modes
dominate in ε = (Ra − Rac)/Rac ∈ [0, 1) for Prandtl number σ = 7 (essentially water)
in a cylinder of moderate aspect ratio γ = r0/d = 4.

The governing equations are invariant under rotations around the axis of the
cylinder. If Rα is a rotation of angle α around the z-axis, its action is

Rα(u, v, w, T , p)(r, θ, z) = (u, v, w, T , p)(r, θ + α, z). (2.10)

These rotations generate the symmetry group SO(2). If the Froude number is zero,
as in the present study, the governing equations are also invariant under reflection
about the mid-plane, Kz, with action

Kz(u, v, w, T , p)(r, θ, z) = (u, v, −w, −T , p)(r, θ, −z). (2.11)

This transformation generates the abstract group Z2, and commutes with rotations.
The complete symmetry group of the system is SO(2) × Z2.

2.1. Numerical method

The governing equations have been solved using the second-order time-splitting
method proposed in Hughes & Randriamampianina (1998) combined with a pseudo-
spectral method for the spatial discretization, using a Galerkin–Fourier expansion
in the azimuthal coordinate θ and Chebyshev collocation in r and z. The radial
dependence of the variables is approximated by a Chebyshev expansion between −γ

and γ and enforcing their proper parities at the origin (Fornberg 1998). Specifically,
the scalar field T has even parity T (−r, θ, z) = T (r, θ + π, z), as does the vertical
velocity w, whereas u and v have odd parity. To avoid including the origin in the
collocation mesh, an odd number of Gauss–Lobatto points in r is used and the
equations are solved only in the interval (0, γ ]. Following Orszag & Patera (1983), we
have used the combinations u+ = u + iv and u− = u − iv in order to decouple the linear
diffusion terms in the momentum equations. For each Fourier mode, the resulting
Helmholtz equations for T , w, u+ and u− have been solved using a diagonalization
technique in the two coordinates r and z. The imposed parity of the functions
guarantees the regularity conditions at the origin required to solve the Helmholtz
equations (Mercader, Net & Falqués 1991).

The code has been tested by comparing with results reported in Rüdiger & Feudel
(2000), Marques & Lopez (2001), Lopez et al. (2002) and Rüdiger & Knobloch
(2003). The agreement is excellent in all cases and the comparisons also reveal the
high performance of the new code. Here, we have fixed γ = 4, σ = 7.0, Ω =625 and
Fr = 0 and consider variations in Ra . We have used 24 spectral modes in z, 48 in
r , a varying number of Fourier modes in θ , between 184 and 350, and a time step
dt = 2 × 10−5 thermal time units.
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(a) (b)

Figure 1. Isosurfaces of (a) temperature at T = 0.025 (light grey) and T = −0.025 (dark grey)
and (b) vertical vorticity at levels 5 (light grey) and −5 (dark grey), of W18 at Ra = 5 × 104,
Ω =625, σ = 7 and γ = 4.

It is useful, in the time evolution and also in the linear stability analysis, to monitor
the kinetic energy associated with each Fourier mode in the spectral approximation:

Em(t) =
1

γ 2

∫ 1

0

∫ γ

0

u∗
m · um r dr dz, (2.12)

where ∗ denotes complex conjugate and um is the m-Fourier component of the velocity
field.

3. Results
3.1. Hopf bifurcations to wall modes

RRBC has SO(2) × Z2 symmetry, and the onset of the wall modes breaks both the
SO(2) and Z2 symmetries. Breaking SO(2) leads to a solution which is periodic in the
azimuthal direction with wavenumber m; the corresponding symmetry group Zm is
generated by the azimuthal rotation R2π/m. This solution Wm is a rotating wave (Ecke
et al. 1992): it precesses such that in a frame of reference rotating with the precession
frequency, the structure is stationary. Although the mid-plane reflection symmetry Kz

is broken, the rotating wave still has a Z2 symmetry: a roto-reflection whose action is
a reflection about the mid-plane followed by an azimuthal rotation of half a period,
Sm = KzRπ/m. This symmetry can also be viewed as a spatio-temporal symmetry: a Kz

reflection followed by a half-period advance in time. The action of this symmetry Sm is

Sm(u, v, w, T , p)(r, θ, z, t) = (u, v, −w, −T , p)(r, θ + π/m, −z, t)

= (u, v, −w, −T , p)(r, θ, −z, t + τm/2), (3.1)

where τm is the precession period of Wm, defined as the time necessary for the pattern
to repeat, corresponding to a rotation of 2π/m. The symmetry group of the rotating
wave is Zm × Z2. The structure of a typical wall mode with azimuthal wavenumber
m =18, W18, at Ra =5 × 104, Ω =625, σ = 7 and γ = 4 is shown in figure 1.
Figure 1(a) shows isosurfaces of the temperature at T = 0.025 (light grey) and
T = −0.025 (dark grey) and figure 1(b) shows isosurfaces of the vertical component of
vorticity at levels 5 (light grey) and −5 (dark grey). The figure illustrates for a typical
wall mode that the convection is restricted to a thin boundary-layer region and is
comprised of rising and descending hot and cold swirling thermals. Figure 2 shows
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T
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Figure 2. Contours of T , u, v and w near the cylinder wall over θ ∈ (0, π/6] at various depths
as indicated of W18 at Ra =5 × 104, Ω =625, σ =7, and γ = 4. There are 12 linearly spaced
contours in the intervals [−0.5, 0.5] for T and [−20, 20] for the velocities; solid (dashed) lines
indicate positive (negative) contour levels.

close-up views of the wall region for θ ∈ [0, π/6], presenting contour plots of the
temperature and the three components of velocity for a pair of thermals at various
depths. These figures show the Z2 symmetry in z, generated by the roto-reflection
Sm =KzRπ/m, and the Zm symmetry in θ , generated by the rotation R2π/m, of the
wall modes. It is useful to specify the symmetries of each of the Fourier components
of Wm. Let us focus on the temperature T (m) of Wm (analogous equations can be
obtained for the velocity field), and let T

(m)
j m be its Fourier components:

T (m)(r, θ, z) =

∞∑
j=−∞

T
(m)
j m (r, z)eij m θ . (3.2)

The invariance of Wm to the Sm symmetry results in

T
(m)
j m (r, z) = (−1)j+1T

(m)
j m (r, −z), (3.3)

i.e. the odd (even) harmonics of m are even (odd) functions of z.
As noted experimentally (Ning & Ecke 1993; Liu & Ecke 1997, 1999), the wall

mode is essentially a one-dimensional pattern, characterized by the wavenumber m.
From now on, we shall describe changes in the structure of wall mode solutions as
Ra is varied in terms of m and illustrate these using T at the mid-height z = 0.

The bifurcation from the basic state to wall modes is a Hopf bifurcation and for
RRBC it is typically supercritical. Figure 3 shows the marginal stability curve (•) for
the Hopf bifurcation from the base state to rotating waves with different azimuthal
wavenumbers m ∈ [8, 38]. The curve has a minimum at mc =18, Rac ≈ 42 286. The
marginal stability curve has been found by evolution of the linearized governing
equations taking as initial condition the base state plus a perturbation in the mth
azimuthal Fourier mode. Monitoring the growth rate of the mode m kinetic energy,
the real part of the most dangerous eigenvalue is computed, and the bifurcation point
on the marginal curve corresponds to zero growth rate. The precession frequencies
ωc of the bifurcated solutions on the marginal curve are plotted as a function of
m in figure 4. The results obtained here are consistent with Goldstein et al. (1993),
although the linear instability of the base flow for the parameter values considered
here was not included in that paper.
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Figure 3. Stability diagram for wall modes Wm with azimuthal wavenumber m ∈ [8, 38],
showing the marginal stability curve (•) and the Eckhaus–Benjamin–Feir curve (◦), for Ω =625,
σ = 7, γ = 4. The curves are shown both in terms of (m, Ra) and the scaled variables
(ε = (Ra − Rac)/Rac , q = (m − mc)/γ ). The dotted curve is the classic prediction for the EBF
curve, given by ε = 3εM where εM (q) is the marginal stability curve.

6 12 18 24 30 36
m

6 12 18 24 30 36
m

20

25

30

35

40

ωm
crit

0

1

2

3

4

5

ωm
crit

—–m

Figure 4. (a) Critical frequencies ωcrit
m of the bifurcating wall modes on the marginal curve

as a function of m and (b) the ratio ωcrit
m /m.

For moderate to large γ (γ = 4 certainly fits this), there are many wall modes that
bifurcate directly from the conduction state for small ε = (Ra − Rac)/Rac. Varying γ

changes which wall mode is first to bifurcate from the conduction state. The onset
can be viewed as a mode competition between wall modes with m = n and m = n+ 1.
It appears that near onset, this competition is organized by a double Hopf bifurcation
of the simplest type (Kuznetsov 1998), where in a region of (Ra, γ )-space, the two
wall modes coexist and are stable, and the mixed mode between them is unstable. This
region is bounded by secondary Hopf bifurcations, where the wall modes undergo
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Figure 5. Schematic of the secondary Hopf bifurcations (SH ) that stabilize the unstable wall
modes. Solid (dashed) lines are stable (unstable) solutions. The horizontal axis is the Rayleigh
number Ra and the vertical axis is a measure of the pure and mixed-mode wall modes (an
amplitude). The conductive state has zero amplitude and coincides with the Ra axis. The
wall modes appear at Hopf bifurcations Hm, where m is the azimuthal wavenumber of the
corresponding wall mode (•, same as in figure 3). QP are quasi-periodic mixed-mode solutions
born at the secondary Hopf bifurcations SH . The wall modes change stability at the circle
points (◦, as in figure 3).

bifurcations to the mixed mode. Note that this secondary Hopf bifurcation is not
the Neimark–Sacker bifurcation found in generic double Hopf bifurcations because
in this case the limit cycles are special, they are rotating waves or relative equilibria,
and so one should not expect to find any resonance behaviour associated with the
resulting mixed mode (Rand 1982; Krupa 1990; Knobloch 1994). Further, the double
Hopf bifurcation itself can only be resonant if n/(n+ 1) = ωcrit

n /ωcrit
n + 1 where ωcrit

n and
ωcrit

n + 1 are the precession frequencies on the marginal curve (Marques, Lopez & Shen
2002), and this is not found to be the case in our problem, as can be seen from
figure 4(b); for resonance there must be two values of m with the same value of
ωcrit

m /m, which is not the case for the aspect ratio γ = 4 considered here.
The mixed modes not only exist between successive integer values of m, but in

fact for other values as well. For example, from figure 3 we see that W12 and W26

bifurcate from the base state at almost the same Rayleigh number (Ra =47 737 and
47 690, respectively); a small change in γ will result in the corresponding double
Hopf bifurcation and the associated mixed mode. All these wall modes and mixed
modes are unstable at onset, except for the critical wall mode (mc = 18 for the γ =4
case studied here). However, for γ > 1, a large number of wall modes are stable
for moderate values of ε. In our numerical problem with γ = 4 and Ω = 625, stable
wall modes exist with m ∈ [10, 33] (see figure 3, inside the EBF curve, shown as the
solid line with symbols ◦). We have extended the computations up to the onset of
bulk convection, at about Ra ≈ 95 000, which destabilizes the wall modes. Increasing
Ra beyond this level does not produce additional stable wall modes. Liu & Ecke
(1999) report m ∈ [17, 32] in experiments with γ = 5 and Ω =274. If all of these wall
modes originally bifurcate from the conduction state, all but one are unstable when
they are created and must undergo a number of secondary bifurcations in order
to become stable. These secondary bifurcations are the secondary Hopf bifurcations
where the mixed modes are born; these secondary Hopf bifurcations reduce the
number of eigenvalues with modulus greater than one, so the initially unstable wall
modes become stable after a number of secondary Hopf bifurcations (figure 5). See
Tuckerman & Barkley (1990) for an analogous situation in the Ginzburg–Landau
equation with Z2 symmetry, where pitchfork bifurcations take the place of the Hopf
bifurcations here.



196 J. M. Lopez, F. Marques, I. Mercader and O. Batiste

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1.0
t

10–15

10–12

10–9

10–6

10–3

100

Em

0

22

44

66
88

11
33

55

77

11

0

22

33

0 0.2 0.4 0.6 0.8 1.0
t

0

22

44

66

88

11

33

55

77

11

0

22

33

0 0.2 0.4 0.6 0.8 1.0
t

0

22,55

44

66

88

11

33

77

44

0

Figure 6. Modal kinetic energy Em as a function of time for Ra = 8.0 × 104, starting
from rest with perturbation in the m= 11 azimuthal Fourier mode; (a) computing in the
11-Fourier subspace; (b) computing in the 11-roto-reflection subspace; and (c) computing in
the 11-roto-reflection subspace but with a convoluted initial condition (see text for details).
The labels on the curves refer to the azimuthal wavenumber m.

3.2. Eckhaus–Benjamin–Feir bifurcations of wall modes

Figure 3 includes the Eckhaus–Benjamin–Feir (EBF) stability curve (solid line with
symbols ◦), where the various wall modes born on the marginal stability curve become
stable with increasing Ra following a number of secondary bifurcations. We have
obtained this curve by starting with a stable wall mode Wm at high enough Ra , and
quasi-statically decreasing Ra until it becomes unstable and evolves either toward the
base state or to a different wall mode. This results in an estimate of the EBF curve in
(m, Ra). In order to compute the bifurcation point precisely, a linear stability analysis
is performed, computing the growth rate of perturbations with different m values and
using bisection in Ra until the bifurcation point is reached. This method works well
except for the extreme values of m where the EBF curve has a large slope and mode
competition plays a critical role.

In order to compute a wall mode with a given m, a sufficiently large value of Ra
is selected and the time evolution code is initiated with the conductive state plus a
random perturbation in the mth azimuthal Fourier mode. For small values of m, wall
modes with some harmonics of m (typically W2m and W3m) are also stable, so they
compete and can become dominant, resulting in an evolution to a wall mode with a
wavenumber different from that desired. This is illustrated in figure 6(a) for m = 11
and Ra = 8.0 × 104, showing that with a random perturbation in the m = 11 Fourier
mode, the m = 22 Fourier mode is also excited, grows faster, and when it saturates
nonlinearly, kills the m =11 mode. This is a type of 1:2 resonance mechanism. Working
in the m-Fourier subspace (i.e. only allowing Fourier modes that are multiples of m)
is not sufficient to obtain Wm. Fortunately, we can use the roto-reflection Z2 symmetry
to reduce the subspace further. Because of this symmetry, a pure Wm only has Fourier
modes that satisfy (3.3). Restricting computations to the roto-reflection subspace, the
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Figure 7. Critical Rayleigh numbers Rac of W26 wall mode for different perturbations m′.
The W26 is stable for Ra > 5.77 × 104.

competition with the W2m is avoided, as can be seen in figure 6(b) for m =11. The
reason is that T

(m)
2m and T

(2m)
2m have opposite parity (3.3), so T

(2m)
2m do not belong to the

Sm roto-reflection subspace and it is not excited. However, the 1:3 mode competition
with W3m is still present (T (m)

3m and T
(3m)
3m have the same parity), and depending on

the initial conditions, the simulation can evolve to W3m (figure 6c): here the initial
condition is a transient state computed without any restriction, in which the dominant
mode is m =44, but m =11 and m =33 have almost the same weight; when restricted
to the roto-reflection subspace, m =33 becomes dominant. The wall modes W11, W22

and W33 have been marked as + in figure 3; note that the W33 is unstable to general
perturbations, but we have found that it is stable both in the m =11 Fourier subspace
and in the m =11 roto-reflection subspace. As we have seen, for small m values
it is difficult to compute stable wall modes, and without using appropriate initial
conditions and restrictions to suitable symmetric subspaces, an apparent sharp cutoff
in the EBF curve would be observed. In an experiment, it is typically not possible
to restrict the flow to symmetric subspaces, and so we can expect to observe an
apparent cutoff at low m values. Summarizing, the basin of attraction of the wall
modes with small m is apparently very narrow, and when computing these Wm with a
time evolution code (or obtaining them in an experiment), simple approaches will fail,
and a convoluted approach is required: working in convenient symmetric subspaces
and using appropriate initial conditions.

Once the wall modes have been obtained (by computing in appropriate subspaces),
their stability to arbitrary perturbations is then determined. A linear stability analysis
of Wm is performed using the nonlinear evolution code with Wm plus perturbations
as initial conditions by determining the growth rates of perturbations with different
azimuthal wavenumbers m′ �= m. In fact, it is sufficient to consider perturbations
with m′ ∈ [1, m/2] since, as a result of the coupling between the perturbation and
the Fourier modes of Wm in the linearized equations for the perturbations, the
perturbations with azimuthal wavenumbers j m ± m′, j an integer, are also excited.
For given m and m′, Ra is varied by bisection until the critical Ra corresponding to
zero growth rate is determined. As a result the EBF curve is obtained. Although on
the EBF curve only one of the perturbations becomes critical, resulting in a critical
m′

c value, we have observed that perturbations with different m′ values bifurcate
very close to the EBF curve. For example, the most dangerous m′ values and the
corresponding critical Ra for W26 are shown in figure 7. When the m′

c perturbation
saturates nonlinearly, the resulting wall mode can be not only any of the Wj m±m′

c
,
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j an integer, but also any of the Wj m±j ′m′
c
with j and j ′ integers, because the nonlinear

interactions excite these additional modes. Which one of all these possible wall modes
results is determined by the nonlinear interactions and initial conditions. Moreover,
there are additional Wm′ states bifurcating very close to the EBF curve that can
also be excited by the nonlinear terms. Consequently, the azimuthal wavenumber of
the resulting wall mode can be, and in many cases is, very different from the most
dangerous m′

c value. Examples of nonlinear evolutions that result from crossing the
EBF curve are presented in § 3.4.

There have been many theoretical and numerical studies of the 1:2 and 1:3
resonances in steady two-dimensional Rayleigh–Bénard convection (e.g. Mizushima &
Fujimura 1992; Nagata 1995; Prat, Mercader & Knobloch 1998; Porter & Knobloch
2000). These are spatial resonances between steady-state bifurcations. In the case
of RRBC, the bifurcations are not steady, they are of Hopf type. In order for the
resonances to play a dynamical role, it is necessary for the ratio of the critical temporal
frequencies to be equal to the ratio of the spatial wavenumbers. Assuming that this
is the case for some particular parameter values, then the resonant normal forms
for RRBC are the same as for steady two-dimensional Rayleigh–Bénard convection,
but with complex coefficients. In particular, owing to the reflection symmetry of the
governing equations and base state, resonances such as 1:3 in which the two modes
have the same (odd) parity, have resonant terms of lower order than resonances
such as 1:2 with different parities (one odd and the other even). The resonant terms
in the 1:3 resonance are third order, whereas in the 1:2 resonance they are fifth
order (Prat et al. 1998). Close to the bifurcation point (the marginal stability curve
in figure 3) these differences can be important, and tend to favour resonances such
as 1:3 compared to the 1:2. However, the wall modes become stable at the EBF
curve, which is far away from the marginal stability curve (except for Wm with m

very close to mc = 18), where the nonlinear interactions are strong and the normal
form analysis is no longer valid. This is clearly illustrated in figure 6, where the 1:2
resonance mechanism is easily excited, whereas the 1:3 resonance requires special
initial conditions in order to become dominant.

Figure 3 also includes the (dotted line) curve Ra(m) = Rac +3(RaM (m) − Rac),
where RaM (m) is the marginal stability curve. This corresponds to the classic
EBF prediction from the one-dimensional Ginzburg–Landau equation with cubic
nonlinearity, ε = 3εM where εM (q) is the marginal stability curve, ε = (Ra − Rac)/Rac

and q = (m − mc)/γ . It is evident that the EBF curve is not symmetric about q = 0;
this is due to the marginal stability curve not being symmetric about q = 0 either.
The marginal stability curve is only expected to be parabolic for Ra very close to
Rac. Also, the actual EBF curve is predicted quite well by the classic Ginzburg–
Landau estimate, although it lies to slightly higher Ra . The experimental results of
Liu & Ecke (1999) are also at Ra values slightly higher than the classic prediction
for EBF.

Of course, although we talk about curves, both the marginal stability curve and the
Eckhaus curve are in fact loci of discrete points since the azimuthal wavenumber m is
an integer. According to Tuckerman & Barkley (1990), for small ε the loci of Eckhaus
points should fall on a parabolic curve and intersect the marginal stability curve near
the minimum. For small ε, this is approximately the case, but there are obvious
asymmetries for large ε between the small-m and large-m modes. For Ra above the
Eckhaus curve, several stable wall modes coexist and the transitions between these
modes when crossing the Eckhaus curve from above are explored in some detail in
the following sections.
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Figure 8. (a) Dispersion relation curves ωp(k) and (b) the corresponding group velocities
vg(k) for the EBF-stable wall modes at Ω = 625, σ =7, γ = 4 and various Ra as indicated.
Cubic line fits have been used in ωp(k) (except for the smallest Ra case for which a quadratic
fit has been used), and vg(k) curves are obtained by differentiation of these fits.

3.3. Characteristics of the EBF-stable wall modes

Figure 8(a) shows the variation of the precession frequency ωp with the azimuthal
wavenumber m for different values of Ra . The precession frequency increases with
increasing Ra , and at a given Ra it varies nonlinearly with the wavenumber. To
obtain the nonlinear dispersion relation, ωp(k), we use the scaled wavenumber
k = m/γ , corresponding to a wavelength λ= 2πd/k = 2πr0/m, as introduced in Ning &
Ecke (1993), and the precession frequency is negative since the wall modes precess
retrograde with respect to the imposed rotation of the container. From ωp(k), the
corresponding group velocity vg = ∂ωp/∂k, shown in figure 8(b), is obtained. Since
ωp(k) is defined for a discrete set of k values corresponding to integer m, we have
numerically computed this derivative using a cubic fit to ωp(k), shown as solid lines
in figure 8(a), and taking the corresponding derivative; hence the vg curves for
fixed Ra shown in the figure are parabolic fits. The exception is the Ra = 4.5 × 104

case, which is close to the minimum of the Eckhaus curve, where a linear estimate
is used, from a parabolic fit to ωp(k). In fact, dispersion relations obtained from
complex Ginzburg–Landau equation models with cubic nonlinearities (the significant
nonlinearities close to the bifurcation point) always produce linear group velocities.
Higher-order terms must be introduced to account for the experimentally observed
deviations from linearity (Liu & Ecke 1999); the use of quintic terms results in
a quadratic dependence of vg on k. Our numerical results suggest that deviations
from Ginzburg–Landau with cubic nonlinearities occur for moderate values of the
criticality ε. The quadratic fits in figure 8(b) are in excellent agreement with the
experimental results of Liu & Ecke (1999), see their figure 26(b). They considered ε

up to 0.26; for these small ε, vg is positive. However, for ε > 0.42 (corresponding to
Ra > 6 × 104), we find that vg becomes negative.

The heat transport efficiency of the different wall modes is analysed in figure 9(a),
where the increase in Nusselt number with respect to the conductive state, Nu − 1, is
plotted against Ra . The maximum efficiency corresponds to the modes that bifurcate
first from the base state, W18 and W17, but the differences are small. Comparing
the Nusselt number of modes mc ± j , small modes (mc − j ) are more efficient than
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Figure 9. Variation of (a) Nu − 1 with Ra , where the low-m (m ∈ [12, 17]) results are plotted
with solid lines and filled symbols and Nu increases with m for these, and the high-m
(m ∈ [18, 26]) results are plotted with dashed lines and open symbols and Nu decreases with
increasing m for these; (b) an enlargement of part of (a); (c) ∂Nu/∂Ra with m; and (d) Nu − 1
with m for the stable wall modes inside the Eckhaus–Benjamin–Feir curve in figure 3.

large modes (mc + j ) for j � 3, close to the critical mc = 18, and for j > 3 it is the
opposite: large modes are more efficient in transporting heat. This is readily apparent
from figure 9(b). Moreover, Nu − 1 varies linearly with Ra , and the slope ∂Nu/∂Ra
is approximately independent of m; varying by no more than about 5% over a
wide range of wavenumbers m ∈ [12, 26] (see figure 9c). This behaviour has also
been observed experimentally, where it has been further noted that the slope is also
approximately independent of Ω in a cylinder of aspect ratio γ =5 (Liu & Ecke 1999,
figure 6). Figure 9(d) shows the variation of Nu − 1 with m for various Ra . For small
ε, W18 transports the maximum heat and the maximum shifts ever so slightly to W17

as ε, i.e. Ra , increases. Notice, however, that the Nu(m) relationship becomes more
skewed as Ra is increased.

3.4. Dynamics of the EBF transition

The EBF instability is observed by using a wall mode Wm with m �=mc at some Ra
above the EBF curve as an initial condition for an evolution with Ra below the EBF
curve. Below the EBF curve, this wall mode is unstable and the subsequent evolution
involves either the annihilation or the creation of a number of the cold/hot wall plume
pairs to a new wall mode with different m. The wall plume pairs will be annihilated
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Figure 10. Contours of T at z = 0 of (a) W12 at Ra = 6.5 × 104 and (b) W20 at Ra = 5.0 × 104.

or created, depending on whether m is greater than or less than mc. The wall mode
becomes EBF unstable via a secondary Hopf bifurcation; the quasi-periodic state
which is spawned at that bifurcation is unstable and not observed directly. At the
lower Ra , there are still a number of wall modes with different m that are stable.
However, it is difficult to predict to which the flow will evolve as their basins of
attraction are complicated to compute and the final evolution is dependent on initial
conditions. Typically, we have found that the change in the wavenumber on crossing
the EBF curve is greater than one, and the final m � mc even with initial m<mc. We
shall now illustrate a number of typical transitions we have observed.

Figure 10 shows the initial W12 at Ra = 6.5 × 104 and the final W20 following a
reduction of Ra to 5.0 × 104. From figure 3, we see that at 5.0 × 104, both W12 and
W13 are below the EBF curve, but that Wm with m ∈ [14, 23] are all EBF stable.
Following the reduction in Ra , there was a long transient during which the m =20
mode grew exponentially and saturated nonlinearly about 3 thermal time units after
the reduction in Ra . At that time, over a short period (about 0.2 thermal time
units) and almost simultaneously, a number of hot and cold wall plumes split to
produce W20 shown in figure 10(b). A convenient way of illustrating the evolution is a
space–time plot of T at mid-height z = 0 and very near the cylinder wall at r = 0.95γ

(figure 11). The dark (light) contours correspond to T < 0 (>0). The vertical axis
is the azimuthal angle θ and the horizontal axis is time in thermal time units. The
constant negative slope of the T -pattern indicates the constant precession retrograde
to the rotation of the cylinder of the initial W12 mode. Following the splitting of the
wall plumes at t ≈ 2.5, the newly formed W20 also precesses steadily and retrograde,
but at a noticeably slower rate. Figure 12 shows the corresponding evolution of the
Nusselt number; W12 is inefficient at Ra =5.0 × 104, but as W20 saturates, Nu shoots
up over the time t ≈ 2.4 to 2.8 and then quickly saturates to a constant. The initial
state had m =12 and the final state has m =20 >mc =18, and Nu for W18 is greater
than for W20 (see figure 9d). Liu & Ecke (1999) note that in their experiments they
never observed a transition that reduced (increased) m beyond mc when starting from
higher (lower) m, but that, in principle, the bound for the transition might be the m

at the opposite end of the EBF stable band for the particular Ra .
Figure 13 shows two more transitions across the EBF curve starting with m < mc.

Figure 13(a) started with W13 at Ra = 5.5 × 104, and reducing Ra to 5.0 × 104

precipitated a transition to W18. In this case, the splitting of the wall plumes did
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Figure 11. Angle-time plots of the temperature at mid-height z = 0 close to the wall at
r = 0.95γ , starting from W12 at Ra = 6.5 × 104 and reducing Ra to 5.0 × 104.
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Figure 12. Time variation of the Nusselt number for the transition shown in figure 11.

not occur simultaneously, but rather was spread over almost one thermal time unit.
The corresponding evolution of the Nusselt number (figure 14) shows the associated
non-smoothness of this transition. On the other hand, in figures 13(b) and 14 we
find that the transition from W14 at Ra = 5.0 × 104 to W18 following a reduction to
Ra = 4.5 × 104 is smooth and occurred with almost simultaneous splitting of the wall
plumes.

We now consider some transitions starting from wall modes with m > mc. The
transition from W22 at Ra =5.0 × 104 following a reduction to Ra = 4.5 × 104 is
shown in figures 15(a) and 16. At Ra = 4.5 × 104, W21 is just EBF stable; the EBF
stable band at this Ra is m ∈ [16, 21]. As in the transitions with the initial m < mc

discussed above, this transition also has a very slow transient. In fact, the transient
before any transition is evident is twice as long. By t ≈ 5, there are a number of
wall plumes that are annihilated over a period of about two thermal times, and
while these annihilations do not occur simultaneously, the associated Nusselt number
development is smooth and by a little beyond t = 6, Nu is constant and W18 has
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Figure 13. Angle-time plots of the temperature at mid-height z = 0 close to the wall at
r = 0.95γ . (a) Starting from W13 at Ra =5.5 × 104 reducing to Ra = 5.0 × 104, and (b) starting
from W14 at Ra = 5.0 × 104 reducing to Ra = 4.5 × 104.

established itself and is precessing steadily retrograde at a faster rate than W22 from
which it transitioned.

A transition from W23 at Ra = 5.0 × 104 following a reduction to Ra = 4.5 × 104

is shown in figures 15(b) and 16. In this case, the initial evolution is very rapid
with a pair of hot plumes and the in between cold plume being annihilated to leave
a single hot plume within one thermal time unit, resulting in W22 mode. However,
at Ra = 4.5 × 104 this mode is also EBF unstable and more plumes are annihilated
after about another thermal time unit to produce W21, which is also EBF unstable.
By t ≈ 4, two more annihilations occur almost simultaneously and about 160◦ apart
azimuthally, resulting in W19. Although W19 is well within the EBF stable band at
this Ra , the subsequent evolution is a slow re-adjustment of the wall plumes. A close
examination of the space–time plot (figure 15b) shows that even at t = 10 the solution
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Figure 14. Time variation of the Nusselt number for the transitions shown in figure 13.

is still not precessing steadily. This is also evident in the Nu time-series plot (figure 16)
which shows that Nu has still not reached a steady state by t = 10, but it does seem
to be asymptoting to one.

The transition shown in figures 15(c) and 16 from W24 at Ra = 5.5 × 104 following a
reduction to Ra = 5.0 × 104 shows an even slower adjustment than the previous case.
At Ra =5.0 × 104, W23 is EBF stable. The initial evolution shows a single annihilation
event at t ≈ 2 to W23, followed by a second annihilation event at about t = 3 to W22.
The subsequent evolution has been computed out to t = 10, but it has not settled down
to W22 with a constant precession. The space–time plot shows that half of the wall
plumes are precessing slightly faster than the rest, and that this fast precessing band
is drifting prograde (in the positive θ-direction). The corresponding Nu time-series
plot shows that Nu is still not constant by t = 10, and it is not clear whether this
very slow transient will eventually asymptote to a constant or if there will be another
annihilation event at some later time.

This type of very slow adjustments following a crossing of the EBF curve has also
been observed experimentally by Liu & Ecke (1999), where they considered in detail
the associated phase dynamics (the phase being the spatial gradient of the pattern
wavenumber) and showed that higher-order generalizations to the complex Ginzburg–
Landau equation are required to account for the observed slow phase dynamics. That
these types of slow phase dynamics also occur in the numerical simulations suggests
that they are inherent to the problem and not due to slow drifts in experimental
conditions over the long durations of the experiments.

4. Conclusions
The EBF instability in rotating convection has been analysed using direct numerical

simulations of the Navier–Stokes equations in the Boussinesq approximation.
Comparisons with the experimental results of Liu & Ecke (1999) are excellent,
and our numerical results have extended far beyond the onset of convection with
ε = (Ra − Rac)/Rac more than twice as large as in the experiments and to larger
Coriolis force, as measured by Ω =ωd2/ν. In fact, we have extended the computations
up to the onset of bulk convection (at about Ra ≈ 95 000) that destabilizes the
wall modes, resulting in much more complex flows, including Küppers-Lortz-type
dynamics. We have computed the EBF curve, and several properties of the bifurcated
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Figure 15. Angle–time plots of the temperature at mid-height z = 0 close to the wall at
r = 0.95γ . (a) Starting from W22 at Ra =5.0 × 104 reducing to Ra =4.5 × 104, (b) starting
from W23 at Ra =5.0 × 104 reducing to Ra =4.5 × 104, (c) starting from W24 at Ra = 5.5 × 104

reducing to Ra = 5.0 × 104.

rotating waves: the precession periods, the dispersion relation curves ωp(k), the group
velocities, the variation of the Nusselt number with Ra and m, and the phase dynamics
associated with transitions across the EBF curve. These results are consistent with the
experimentally observed trends at lower ε and Ω . Furthermore, an apparent cutoff
of the EBF instability at low wavenumbers owing to a resonance with harmonics
has been found, and the true EBF curve was determined by first computing the wall
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Figure 16. Time variation of the Nusselt number for the evolutions shown in figure 15.

mode in the roto-reflection subspace and then determining its stability to general
perturbations.

The rotating wave convective states are wall modes, consisting of a periodic array
of alternating hot and cold swirling thermal plumes confined to a thin boundary layer
at the cylinder sidewall. There is a variety of available stable plume sizes, those with
azimuthal wavenumber in the interior of the EBF curve. These states are born in
Hopf bifurcations at the marginal stability curve (solid curve with • in figure 3), but
only the rotating wave with m =18 is born stable; the other rotating waves stabilize
in a sequence of secondary Hopf bifurcations (figure 5). This process is analogous to
the sequence of pitchfork bifurcations discussed in Tuckerman & Barkley (1990) in
the context of the Ginzburg–Landau equation.

For pure rotating wave states, the azimuthal wavenumber must be an integer as
the azimuthal direction is periodic. However, mixed-mode states between wall modes
with different azimuthal wavenumbers exist, but are usually unstable. They appear
at the secondary Hopf bifurcations associated with the EBF instability. These mixed
states govern the transient behaviour observed when stable wall modes cross the EBF
curve and become unstable, as we have illustrated in § 3.4. Liu & Ecke (1999) showed
that these very slow transients are approximately described by the phase dynamics
of the complex Ginzburg–Landau (cGL) equation. They also showed that quintic
terms must be added to the cGL equation in order to account for their experimental
observations at moderate ε ≈ 0.2 values. The coefficients of these quintic terms must
be adjusted to fit the observations. As the cGL equation is an approximation valid
only for small ε values, i.e. close to the minimum of the EBF curve, it is likely that
additional higher-order terms should be added for larger values of ε.

To unravel all the details of the dynamics discussed in § 3.4, direct numerical
simulations of the Navier–Stokes equations, like those presented in this paper, are
necessary. The computational costs presently limit these computations to moderate
aspect ratio containers (our computations have γ =4), where they have been useful
in exploring the high Coriolis force effects in the absence of centrifugal force effects
and at Rayleigh numbers well beyond the onset of convection. For large-aspect-ratio
containers (γ > 10), computations are expensive and the cGL approximation becomes
a convenient tool to describe the dynamics. However, in large-aspect-ratio containers,
the centrifugal force effects become more important and these can alter the dynamics.
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